The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081916 a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750. 3
 1, 5, 25, 126, 645, 3375, 18125, 100000, 565625, 3265625, 19140625, 113281250, 673828125, 4013671875, 23876953125, 141601562500, 836181640625, 4913330078125, 28717041015625, 166931152343750, 965118408203125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A081915. 5th binomial transform of (1,0,0,1,0,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^3 - 3n^2 + 2n + 6k^3)/(6k^3), with g.f. (1 - 3kx + 3k^2x^2 - (k^3-1)x^3)/(1-kx)^4. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..150 Index entries for linear recurrences with constant coefficients, signature (20,-150,500,-625). FORMULA a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750. G.f.: (1 - 15x + 75x^2 - 124x^3)/(1-5x)^4. MATHEMATICA a[n_]:= 5^n*(n^3 - 3n^2 + 2n + 750)/750 ; Array[a, 40, 0] (* or *) CoefficientList[Series[(1 - 15x + 75x^2 - 124x^3)/(1-5x)^4 , {x, 0, 40}], x] (* Stefano Spezia, Sep 02 2018 *) LinearRecurrence[{20, -150, 500, -625}, {1, 5, 25, 126}, 30] (* Harvey P. Dale, Jun 29 2021 *) PROG (MAGMA) [5^n*(n^3-3*n^2+2*n+750)/750: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011 CROSSREFS Sequence in context: A080516 A033141 A099524 * A307879 A082308 A270767 Adjacent sequences:  A081913 A081914 A081915 * A081917 A081918 A081919 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 16:42 EST 2021. Contains 349413 sequences. (Running on oeis4.)