OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Rob Arthan, Comments on A026674, A026725, A026670
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
FORMULA
G.f.: (1/2)*((1-x)/(sqrt(1-4*x)-x) - 1). - Ralf Stephan, Feb 05 2004
G.f.: x*c(x)^3/(1-x*c(x)^3) = (1-5*x -(1-x)*sqrt(1-4*x))/(2*(x^2+4*x-1)), c(x) the g.f. of A000108. - Paul Barry, Mar 19 2007
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, ...
6, 1, 1, 1, 0, 0, 0, ...
10, 1, 1, 1, 1, 0, 0, ...
15, 1, 1, 1, 1, 1, 0, ...
21, 1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence n*a(n) +(-9*n+8)*a(n-1) +23*(n-2)*a(n-2) +(-11*n+48)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Nov 26 2012
a(n) = (1/n)*Sum_{k=1..n} k*binomial(2*n,n-k)*Sum_{i=0..k/2} binomial(k-i,i). - Vladimir Kruchinin, Apr 28 2016
a(n) ~ (3 - sqrt(5)) * (2 + sqrt(5))^n / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
MAPLE
a := n -> add(binomial(2*n, n+k)*combinat:-fibonacci(1+k)*(k/n), k=1..n):
seq(a(n), n=1..30); # Peter Luschny, Apr 28 2016
MATHEMATICA
a[n_] := Sum[Binomial[2n, n+k] Fibonacci[k+1] k/n, {k, 1, n}];
Array[a, 30] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
PROG
(Maxima)
a(n):=sum(k*binomial(2*n, n-k)*(sum(binomial(k-i, i), i, 0, k/2)), k, 1, n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
(PARI) a(n)=sum(k=1, n, k*binomial(2*n, n-k)*sum(i=0, k\2, binomial(k-i, i)))/n \\ Charles R Greathouse IV, Apr 28 2016
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (-1+5*x +(1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
(Sage) a=((-1+5*x +(1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 16 2019
(GAP) List([1..30], n-> Sum([1..n], k-> Binomial(2*n, n+k)*Fibonacci(k+1) *(k/n) )); # G. C. Greubel, Jul 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved