login
A026670
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 1, T(n,1) = T(n,n-1) = n+1; for n >= 2, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k = n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
17
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 11, 5, 1, 1, 6, 16, 16, 6, 1, 1, 7, 22, 43, 22, 7, 1, 1, 8, 29, 65, 65, 29, 8, 1, 1, 9, 37, 94, 173, 94, 37, 9, 1, 1, 10, 46, 131, 267, 267, 131, 46, 10, 1, 1, 11, 56, 177, 398, 707, 398, 177, 56, 11, 1, 1, 12, 67
OFFSET
0,5
FORMULA
T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=j.
EXAMPLE
E.g., 11 = T(4, 2) = T(3, 1) + T(2, 2) + T(3, 2) = 4 + 3 + 4.
Triangle begins:
1
1 1
1 3 1
1 4 4 1
1 5 11 5 1
1 6 16 16 6 1
1 7 22 43 22 7 1
1 8 29 65 65 29 8 1
1 9 37 94 173 94 37 9 1
1 10 46 131 267 267 131 46 10 1
1 11 56 177 398 707 398 177 56 11 1
1 12 67 233 575 1105 1105 575 233 67 12 1
... - Philippe Deléham, Feb 02 2014
CROSSREFS
Cf. A026674.
Sequence in context: A050177 A013580 A147290 * A131402 A238498 A026626
KEYWORD
nonn,tabl
EXTENSIONS
Formula corrected by David Perkinson (davidp(AT)reed.edu), Sep 19 2001 and also by Rob Arthan, Jan 16 2003
Typo in name corrected by Sean A. Irvine, Oct 09 2019
Offset corrected by R. J. Mathar and Sean A. Irvine, Oct 25 2019
STATUS
approved