login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147290
A Pascal triangle with an Eulerian-number shift: p(x,n)=If[n < 1, (x + 1)^(n + 1), (x + 1)^(n + 1) + (1 - x)^(n + 1)*PolyLog[ -n, x]].
0
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 10, 5, 1, 1, 6, 21, 21, 6, 1, 1, 7, 41, 86, 41, 7, 1, 1, 8, 78, 337, 337, 78, 8, 1, 1, 9, 148, 1247, 2486, 1247, 148, 9, 1, 1, 10, 283, 4377, 15745, 15745, 4377, 283, 10, 1, 1, 11, 547, 14728, 88444, 156442, 88444, 14728, 547, 11, 1, 1
OFFSET
-1,5
COMMENTS
Row sums are {1, 2, 5, 10, 22, 56, 184, 848, 5296, 40832, 363904, 3630848, ...}.
FORMULA
p(x,n)=If[n < 1, (x + 1)^(n + 1), (x + 1)^(n + 1) + (1 - x)^(n + 1)*PolyLog[ -n, x]]; t(n,m)=Coefficients(p(x,n)0.
EXAMPLE
{1}, {1, 1}, {1, 3, 1}, {1, 4, 4, 1}, {1, 5, 10, 5, 1}, {1, 6, 21, 21, 6, 1}, \ {1, 7, 41, 86, 41, 7, 1}, {1, 8, 78, 337, 337, 78, 8, 1}, {1, 9, 148, 1247, 2486, 1247, 148, 9, 1}, {1, 10, 283, 4377, 15745, 15745, 4377, 283, 10, 1}, {1, 11, 547, 14728, 88444, 156442, 88444, 14728, 547, 11, 1}, {1, 12, 1068, 48005, 455522, 1310816, 1310816, 455522, 48005, 1068, 12, 1}
MATHEMATICA
Clear[p, n, m]; p[x_, n_] = If[n < 1, (x + 1)^(n + 1), (x + 1)^(n + 1) + (1 - x)^(n + 1)*PolyLog[ -n, x]]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, -1, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, -1, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A173117 A050177 A013580 * A026670 A131402 A238498
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 04 2008
EXTENSIONS
Edited by N. J. A. Sloane, Nov 07 2008
STATUS
approved