login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147289
A multi-shifted and scaled Pascal triangle: t(n,m)=Binomial[n, m] + Sum[If[n >= 2*k,2*Binomial[n - 2*k, m - k], 0], {k, 1, Floor[n/2]}].
0
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 12, 6, 1, 1, 7, 18, 18, 7, 1, 1, 8, 25, 38, 25, 8, 1, 1, 9, 33, 63, 63, 33, 9, 1, 1, 10, 42, 96, 128, 96, 42, 10, 1, 1, 11, 52, 138, 224, 224, 138, 52, 11, 1, 1, 12, 63, 190, 362, 450, 362, 190, 63, 12, 1
OFFSET
0,5
COMMENTS
The row sums are: {1, 2, 6, 12, 26, 52, 106, 212, 426, 852, 1706, ...}.
FORMULA
t(n,m)=Binomial[n, m] + Sum[If[n >= 2*k,2*Binomial[n - 2*k, m - k], 0], {k, 1, Floor[n/2]}].
EXAMPLE
{1}, {1, 1}, {1, 4, 1}, {1, 5, 5, 1}, {1, 6, 12, 6, 1}, {1, 7, 18, 18, 7, 1}, {1, 8, 25, 38, 25, 8, 1}, {1, 9, 33, 63, 63, 33, 9, 1}, {1, 10, 42, 96, 128, 96, 42, 10, 1}, {1, 11, 52, 138, 224, 224, 138, 52, 11, 1}, {1, 12, 63, 190, 362, 450, 362, 190, 63, 12, 1}
MATHEMATICA
Table[Binomial[n, m] + Sum[If[n >= 2*k, 2*Binomial[n - 2*k, m - k], 0], {k, 1, Floor[n/2]}], {n, 0, 10}, {m, 0, n}]; Flatten[%]
CROSSREFS
Sequence in context: A173740 A028275 A173118 * A147566 A204621 A146770
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 04 2008
EXTENSIONS
Edited by N. J. A. Sloane, Nov 07 2008
STATUS
approved