The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217632 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nX3 array 6
 0, 4, 16, 66, 244, 968, 3726, 14520, 56352, 218978, 850620, 3304624, 12837742, 49872976, 193747784, 752680930, 2924043092, 11359448344, 44129645550, 171436683864, 666004286592, 2587320999714, 10051331417116, 39047827550656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also, number of maximal independent sets in the 3-dimensional (2, 3, n) grid graph. [Euler et al.] - N. J. A. Sloane, Nov 21 2013 Column 3 of A217637. LINKS R. H. Hardin, Table of n, a(n) for n = 0..184 R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, July 2013; http://www.degruyter.com/view/j/dmgt.2013.33.issue-3/dmgt.1707/dmgt.1707.xml FORMULA Empirical: a(n) = 2*a(n-1) +9*a(n-2) -2*a(n-3) -17*a(n-4) -4*a(n-5) +8*a(n-6) -3*a(n-7) +a(n-8) -3*a(n-9) -2*a(n-10) +4*a(n-11) Euler et al. give an explicit g.f. and recurrence, and so (presumably) prove this recurrence is correct. - N. J. A. Sloane, Nov 21 2013 EXAMPLE Some solutions for n=3 ..1..0..0....0..0..0....0..0..0....1..0..0....0..0..1....0..0..1....1..1..0 ..0..1..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....1..0..0 ..0..0..1....0..1..1....0..0..1....1..0..1....0..0..0....0..0..1....0..0..0 CROSSREFS Cf. A217637. Sequence in context: A026872 A081915 A307878 * A026762 A277871 A082307 Adjacent sequences: A217629 A217630 A217631 * A217633 A217634 A217635 KEYWORD nonn AUTHOR R. H. Hardin Oct 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 22:20 EDT 2023. Contains 361529 sequences. (Running on oeis4.)