login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217631
Number of nX2 arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nX2 array
6
0, 2, 6, 16, 38, 98, 244, 614, 1542, 3872, 9726, 24426, 61348, 154078, 386974, 971904, 2440982, 6130642, 15397396, 38671286, 97124758, 243933408, 612650254, 1538699994, 3864517572, 9705918062, 24376870766, 61223660096, 153766108518
OFFSET
0,2
COMMENTS
Also, number of maximal independent sets in the 3-dimensional (2, 2, n) grid graph. [Euler et al.] - N. J. A. Sloane, Nov 21 2013
Column 2 of A217637.
LINKS
R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, July 2013; http://www.degruyter.com/view/j/dmgt.2013.33.issue-3/dmgt.1707/dmgt.1707.xml
FORMULA
G.f. = (2*x+4*x^2+4*x^3)/(1-x-3*x^2-2*x^3). [Euler et al.] - N. J. A. Sloane, Nov 21 2013
Empirical: a(n) = a(n-1) + 3*a(n-2) + 2*a(n-3). (Follows from g.f. - N. J. A. Sloane, Nov 21 2013)
EXAMPLE
Some solutions for n=3
..0..0....0..0....0..0....1..1....0..0....1..0....1..0....0..1....1..1....0..0
..0..1....0..0....0..1....0..1....1..0....0..0....0..0....0..0....1..1....1..0
..0..0....1..0....1..1....0..0....0..0....0..0....1..0....0..1....1..1....1..1
CROSSREFS
Sequence in context: A330886 A265758 A265107 * A046209 A285885 A273348
KEYWORD
nonn
AUTHOR
R. H. Hardin Oct 09 2012
STATUS
approved