login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273348
The sum of the semiperimeters of the bargraphs of area n (n>=1).
2
2, 6, 16, 39, 92, 211, 476, 1059, 2332, 5091, 11036, 23779, 50972, 108771, 231196, 489699, 1034012, 2177251, 4572956, 9582819, 20039452, 41826531, 87148316, 181287139, 376555292, 781072611, 1618069276, 3347986659, 6919669532, 14286731491, 29468247836, 60726065379, 125031270172, 257220819171, 528758195996
OFFSET
1,1
LINKS
A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs, Quaestiones Mathematicae, Volume 39, 2016 - Issue 5.
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
M. Bousquet-Mélou and R. Brak, Exactly solved models of polyominoes and polygons, Chapter 3 of Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, Vol. 775, 43-78, Springer, Berlin, Heidelberg 2009.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088 [math.CO], 2016.
FORMULA
G.f.: g = t(2-2t-2t^2+t^3)/((1-t^2)(1-2t)^2).
a(n) = (15*n2^n+29*2^n-2(-1)^n-18)/36.
a(n) = Sum_{k>=2} k * A273346(k,n).
EXAMPLE
a(4) = 39 because the 8 bargraphs of area 4 correspond to the compositions [2,2],[4],[3,1],[1,3],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1] and the sum of their semiperimeters is 4 + 7*5 = 39.
MAPLE
a := proc(n) (5/12)*n*2^n+(29/36)*2^n-(1/18)*(-1)^n-1/2 end proc:
seq(a(n), n = 1 .. 35);
MATHEMATICA
LinearRecurrence[{4, -3, -4, 4}, {2, 6, 16, 39}, 35] (* Jean-François Alcover, Nov 27 2017 *)
PROG
(PARI) first(n) = Vec(x*(2-2*x-2*x^2+x^3)/((1-x^2)*(1-2*x)^2) + O(x^(n+1))) \\ Iain Fox, Nov 27 2017
CROSSREFS
Sequence in context: A217631 A046209 A285885 * A198951 A371709 A078774
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 03 2016
STATUS
approved