login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273351
Number of up steps in all bargraphs of semiperimeter n (n>=2).
1
1, 3, 10, 32, 102, 326, 1046, 3370, 10899, 35369, 115123, 375705, 1228970, 4028366, 13228516, 43511464, 143329157, 472761015, 1561246112, 5161512902, 17081176912, 56579333508, 187570898065, 622318325281, 2066208751201, 6864800067363, 22821993704857, 75915970992635, 252667993114760
OFFSET
2,2
LINKS
A. Blecher, C. Brennan and A. Knopfmacher, Combinatorial parameters in bargraphs, Quaestiones Mathematicae, 39 (2016), 619-635.
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
FORMULA
G.f.: g(z) = (1-z-z^2-z^3-(1+z)*h)/(2*h), where h = sqrt(1-4*z+2*z^2+z^4).
a(n) = Sum_{k>=1} k*A273350(n,k).
Conjecture: n*(13*n-40)*a(n) +(-55*n^2+211*n-129)*a(n-1) +(38*n^2-212*n+255)*a(n-2) +(-6*n^2+56*n-75)*a(n-3) +(13*n^2-66*n+3)*a(n-4) -(3*n-13)*(n-6)*a(n-5)=0. - R. J. Mathar, Jun 06 2016
Conjecture: n*(n-3)*(n-2)^2*a(n) -(n-3)*(2*n-3)*(2*n^2-6*n+3) *a(n-1) +(2*n^4-16*n^3+41*n^2-36*n+5) *a(n-2) +2*(n-1)*(2*n-5) *a(n-3) +(n-2)*(n-5)*(n-1)^2 *a(n-4)=0. - R. J. Mathar, Jun 06 2016
EXAMPLE
a(4) = 10 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have 1,2,2,2,3 up steps.
MAPLE
g := ((1-z-z^2-z^3-(1+z)*sqrt(1-4*z+2*z^2+z^4))*(1/2))/sqrt(1-4*z+2*z^2+z^4): gser := series(g, z = 0, 33): seq(coeff(gser, z, n), n = 2 .. 30);
CROSSREFS
Sequence in context: A278133 A077826 A292398 * A033505 A297067 A063782
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 02 2016
STATUS
approved