The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292398 p-INVERT of A010892, where p(S) = 1 - S - S^2 - S^3. 2
 1, 3, 10, 32, 102, 323, 1021, 3224, 10177, 32121, 101378, 319960, 1009830, 3187145, 10059029, 31747584, 100199485, 316242607, 998102878, 3150142840, 9942261690, 31379074783, 99036453193, 312571964808, 986517893269, 3113579153493, 9826861945870 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4, -1, -6, 1, 4, 1) FORMULA G.f.: -((1 - x - x^2 + x^3 + x^4)/(-1 + 4 x - x^2 - 6 x^3 + x^4 + 4 x^5 + x^6)). a(n) = 4*a(n-1) - a(n-2) - 6*a(n-3) + a(n-4) + 4*a(n-5) + a(n-6) for n >= 7. MAPLE A292398:=proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n=2 then 10 elif n=3 then 32 elif n=4 then 102 elif n=5 then 323 elif  n>=6 then 4*procname(n-1)-procname(n-2)-6*procname(n-3)+procname(n-4)+4*procname(n-5)+procname(n-6) fi; end: seq(A292398(n), n=0..10^2); # Muniru A Asiru, Oct 02 2017 MATHEMATICA z = 60; s = x/(1 - x + x^2); p = 1 - s - s^2 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A010892 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292398 *) PROG (GAP) a:=[1, 3, 10, 32, 102, 323];; for n in [7..10^2] do a[n]:=4*a[n-1]-a[n-2]-6*a[n-3]+a[n-4]+4*a[n-5]+a[n-6]; od; A292398:=a; # Muniru A Asiru, Oct 02 2017 (PARI) Vec(-(1 - x - x^2 + x^3 + x^4)/(-1 + 4*x - x^2 - 6*x^3 + x^4 + 4*x^5 + x^6) + O(x^20)) \\ Felix Fröhlich, Oct 02 2017 CROSSREFS Cf. A010892, A292301. Sequence in context: A134377 A278133 A077826 * A273351 A033505 A297067 Adjacent sequences:  A292395 A292396 A292397 * A292399 A292400 A292401 KEYWORD nonn,easy AUTHOR Clark Kimberling, Sep 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 20:22 EST 2021. Contains 349567 sequences. (Running on oeis4.)