login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273349
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k level steps (n>=2,k>=0). A level step in a bargraph is any pair of adjacent horizontal steps at the same height.
1
1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 14, 12, 7, 1, 1, 33, 34, 19, 9, 1, 1, 79, 95, 61, 27, 11, 1, 1, 194, 261, 193, 95, 36, 13, 1, 1, 482, 728, 585, 333, 136, 46, 15, 1, 1, 1214, 2022, 1797, 1091, 521, 184, 57, 17, 1, 1, 3090, 5634, 5439, 3629, 1821, 763, 239, 69, 19, 1, 1
OFFSET
2,4
COMMENTS
Number of entries in row n is n-1.
Sum of entries in row n = A082582(n).
T(n,0) = A025243(n+1).
Sum(k*T(n,k),k>=0) = A271943(n-1). This implies that the number of level steps in all bargraphs of semiperimeter n is equal to the sum of the widths of all bargraphs of semiperimeter n-1.
REFERENCES
A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
FORMULA
G.f.: G(t,z) = (1-tz-z-2z^2+tz^2-sqrt((1-z)(1-z-2tz-4z^2+t^2z^2+2tz^2-4z^3-t^2z^3+4tz^3)))/(2z) (z marks semiperimeter, t marks level steps; obtained from the expression for F in the Blecher et al. reference (Section 7.1) by setting x=z, y=z, w=t).
EXAMPLE
Row 4 is 3,1,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have 2,0,0,1,0 level steps.
Triangle starts
1;
1,1;
3,1,1;
6,5,1,1;
14,12,7,1,1
MAPLE
G:=((1-t*z-z-2*z^2+t*z^2-sqrt((1-t*z-z-2*z^2+t*z^2)^2-4*z^3))*(1/2))/z: Gser:=simplify(series(G, z=0, 21)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t, w) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0))+
`if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+ `if`(y<1, 0,
`if`(w=1, z, 1)*b(n-1, y, 0, min(w+1, 1)))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=2..18); # Alois P. Heinz, Jun 04 2016
MATHEMATICA
b[n_, y_, t_, w_] := b[n, y, t, w] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, If[w == 1, z, 1]*b[n - 1, y, 0, Min[w + 1, 1]]]]];
T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][ b[n, 0, 0, 0]];
Table[T[n], {n, 2, 18}] // Flatten (* Jean-François Alcover, Jul 29 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 03 2016
STATUS
approved