login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025243 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4. 5
1, 2, 1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, 20544, 53545, 140399, 370098, 980226, 2607242, 6961462, 18652112, 50133616, 135140598, 365254226, 989614976, 2687312752, 7312725944, 19938170096, 54460115308, 149007155356, 408341969073 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of Dyck (n-1)-paths that contain no DUDU's and no UUDD's (n>=3). For example, a(5)=3 counts UUUDUDDD, UDUUDUDD, UUDUDDUD. - David Callan, Sep 25 2006

Apart from the first three terms, the total number of bargraphs of semiperimeter n with no levels for n>=2. The sequence begins: 1, 3, 6, 14, 33, ... - Arnold Knopfmacher, Nov 01 2016

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..2192

Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.

Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.

Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, Levels in bargraphs, Ars Mathematica Contemporanea, 9 (2015), 287-300.

FORMULA

G.f.: (1 + x + 2*x^2 - sqrt(1 - 2*x - 3*x^2 + 4*x^4))/2. - Michael Somos, Jun 08 2000

Conjecture: n*(n+1)*a(n) +n*(n+1)*a(n-1) +(n^2+n+12)*a(n-2) +(-29*n^2+85*n+78)*a(n-3) +2*(-13*n^2+56*n+33)*a(n-4) +12*(n+1)*(n-7)*a(n-5) +8*(5*n+3)*(n-8)*a(n-6)=0. - R. J. Mathar, Feb 25 2015

MATHEMATICA

CoefficientList[Series[(1 + x + 2 x^2 - Sqrt[1 - 2 x - 3 x^2 + 4 x^4]) / 2 / x, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2015 *)

PROG

(PARI) a(n)=polcoeff((x+2*x^2-sqrt(1-2*x-3*x^2+4*x^4+x*O(x^n)))/2, n)

(MAGMA) a:=[1, 2, 1]; for n in [4..35] do Append(~a, &+[a[k]*a[n-k]:k in [1..n-3]] ); end for; a; // Marius A. Burtea, Jan 02 2020

CROSSREFS

Sequence in context: A060517 A163181 A074662 * A341014 A145085 A228904

Adjacent sequences:  A025240 A025241 A025242 * A025244 A025245 A025246

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 01:25 EST 2021. Contains 349558 sequences. (Running on oeis4.)