login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273347 The sum of the areas of the bargraphs of semiperimeter n (n>=2). 4
1, 4, 16, 60, 218, 778, 2744, 9600, 33391, 115638, 399137, 1374050, 4720272, 16187632, 55434424, 189607406, 647872199, 2211794804, 7545239986, 25722676402, 87641357150, 298456587038, 1015914399813, 3456670564220, 11757143968393, 39976448714086, 135887220346719 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 2..1000

M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.

M. Bousquet-Mélou and R. Brak, Exactly solved models of polyominoes and polygons, Chapter 3 of Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, Vol. 775, 43-78, Springer, Berlin, Heidelberg 2009.

Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016

FORMULA

G.f.: g(z) = z^2 (2 - z - z^3 - z q )^2 /(1 - 4z + z^4 + q + z^2 q)^2, where q = sqrt(1 - 4z + 2z^2 + z^4) (see Section 4.3 of the Blecher et al. reference).

a(n) = Sum(k*A273346(n,k), k>=1).

a(n) = ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2) +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4) +(4*n-9) * (5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6) +(n-7)*(4*n-9)*a(n-7))/ (n*(4*n-13)) for n>=7. - Alois P. Heinz, Jun 04 2016

EXAMPLE

a(4) = 16  because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the sum of their areas is 3 + 3 + 3 + 4 + 3 = 16.

MAPLE

Q := sqrt(1-4*z+2*z^2+z^4): g := z^2*(2-z-z^3-z*Q)^2/(1-4*z+z^4+Q+z^2*(2+Q))^2; gser:= series(g, z = 0, 40): seq(coeff(gser, z, m), m = 2 .. 35);

# second Maple program:

a:= proc(n) option remember;

      `if`(n<7, [0$2, 1, 4, 16, 60, 218, 778][n+1],

      ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2)

       +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4)

       +(4*n-9)*(5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6)

       +(n-7)*(4*n-9)*a(n-7))/(n*(4*n-13)))

    end:

seq(a(n), n=2..30);  # Alois P. Heinz, Jun 04 2016

MATHEMATICA

b[n_, y_, t_] := b[n, y, t] = Expand[If[n==0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; a[n_] := (row = T[n]; row.Range[Length[row]]); Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz's Maple code for A273346 *)

CROSSREFS

Cf. A273346, A273348.

Sequence in context: A089932 A120926 A255303 * A268939 A269635 A267928

Adjacent sequences:  A273344 A273345 A273346 * A273348 A273349 A273350

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jun 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)