The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273347 The sum of the areas of the bargraphs of semiperimeter n (n>=2). 4
 1, 4, 16, 60, 218, 778, 2744, 9600, 33391, 115638, 399137, 1374050, 4720272, 16187632, 55434424, 189607406, 647872199, 2211794804, 7545239986, 25722676402, 87641357150, 298456587038, 1015914399813, 3456670564220, 11757143968393, 39976448714086, 135887220346719 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 REFERENCES A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint). LINKS Alois P. Heinz, Table of n, a(n) for n = 2..1000 M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112. M. Bousquet-Mélou and R. Brak, Exactly solved models of polyominoes and polygons, Chapter 3 of Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, Vol. 775, 43-78, Springer, Berlin, Heidelberg 2009. Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016 FORMULA G.f.: g(z) = z^2 (2 - z - z^3 - z q )^2 /(1 - 4z + z^4 + q + z^2 q)^2, where q = sqrt(1 - 4z + 2z^2 + z^4) (see Section 4.3 of the Blecher et al. reference). a(n) = Sum(k*A273346(n,k), k>=1). a(n) = ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2) +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4) +(4*n-9) * (5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6) +(n-7)*(4*n-9)*a(n-7))/ (n*(4*n-13)) for n>=7. - Alois P. Heinz, Jun 04 2016 EXAMPLE a(4) = 16 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the sum of their areas is 3 + 3 + 3 + 4 + 3 = 16. MAPLE Q := sqrt(1-4*z+2*z^2+z^4): g := z^2*(2-z-z^3-z*Q)^2/(1-4*z+z^4+Q+z^2*(2+Q))^2; gser:= series(g, z = 0, 40): seq(coeff(gser, z, m), m = 2 .. 35); # second Maple program: a:= proc(n) option remember; `if`(n<7, [0\$2, 1, 4, 16, 60, 218, 778][n+1], ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2) +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4) +(4*n-9)*(5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6) +(n-7)*(4*n-9)*a(n-7))/(n*(4*n-13))) end: seq(a(n), n=2..30); # Alois P. Heinz, Jun 04 2016 MATHEMATICA b[n_, y_, t_] := b[n, y, t] = Expand[If[n==0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; a[n_] := (row = T[n]; row.Range[Length[row]]); Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz's Maple code for A273346 *) CROSSREFS Cf. A273346, A273348. Sequence in context: A089932 A120926 A255303 * A268939 A269635 A267928 Adjacent sequences: A273344 A273345 A273346 * A273348 A273349 A273350 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 03 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)