login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of the semiperimeters of the bargraphs of area n (n>=1).
2

%I #28 Nov 27 2017 05:49:45

%S 2,6,16,39,92,211,476,1059,2332,5091,11036,23779,50972,108771,231196,

%T 489699,1034012,2177251,4572956,9582819,20039452,41826531,87148316,

%U 181287139,376555292,781072611,1618069276,3347986659,6919669532,14286731491,29468247836,60726065379,125031270172,257220819171,528758195996

%N The sum of the semiperimeters of the bargraphs of area n (n>=1).

%H A. Blecher, C. Brennan, and A. Knopfmacher, <a href="https://doi.org/10.2989/16073606.2015.1121932">Combinatorial parameters in bargraphs</a>, Quaestiones Mathematicae, Volume 39, 2016 - Issue 5.

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.

%H M. Bousquet-Mélou and R. Brak, <a href="https://hal.archives-ouvertes.fr/hal-00342024">Exactly solved models of polyominoes and polygons</a>, Chapter 3 of Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, Vol. 775, 43-78, Springer, Berlin, Heidelberg 2009.

%H Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088 [math.CO], 2016.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-4,4).

%F G.f.: g = t(2-2t-2t^2+t^3)/((1-t^2)(1-2t)^2).

%F a(n) = (15*n2^n+29*2^n-2(-1)^n-18)/36.

%F a(n) = Sum_{k>=2} k * A273346(k,n).

%e a(4) = 39 because the 8 bargraphs of area 4 correspond to the compositions [2,2],[4],[3,1],[1,3],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1] and the sum of their semiperimeters is 4 + 7*5 = 39.

%p a := proc(n) (5/12)*n*2^n+(29/36)*2^n-(1/18)*(-1)^n-1/2 end proc:

%p seq(a(n), n = 1 .. 35);

%t LinearRecurrence[{4, -3, -4, 4}, {2, 6, 16, 39}, 35] (* _Jean-François Alcover_, Nov 27 2017 *)

%o (PARI) first(n) = Vec(x*(2-2*x-2*x^2+x^3)/((1-x^2)*(1-2*x)^2) + O(x^(n+1))) \\ _Iain Fox_, Nov 27 2017

%Y Cf. A273346, A273347.

%K nonn

%O 1,1

%A _Emeric Deutsch_, Jun 03 2016