OFFSET
0,2
COMMENTS
T(2*n+1,n) is diagonal of triangle A125177.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1381
FORMULA
G.f.: (4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x.
a(n) ~ 2^(4*n+1/2) / (sqrt(Pi) * n^(3/2) * 3^(n-3/2)). - Vaclav Kotesovec, Nov 05 2016
MATHEMATICA
Table[Sum[Binomial[2*i, i]*Binomial[2*n-i, n-i+1]/(i+1), {i, 0, n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2016 *)
PROG
(Maxima)
a(n):=sum((binomial(2*i, i)*binomial(2*n-i, n-i+1))/(i+1), i, 0, n+1);
(PARI) x='x+O('x^50); Vec((4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x) \\ G. C. Greubel, Apr 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 02 2016
STATUS
approved