login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277871
a(n) = Sum_{i=0..n+1} binomial(2*n-i,n-i+1)*Catalan(i).
1
1, 4, 16, 66, 279, 1203, 5275, 23474, 105853, 483108, 2229253, 10390691, 48879588, 231879456, 1108473015, 5335987930, 25849521109, 125945214309, 616833862018, 3035286848660, 14999774773110, 74413424196360, 370463714276625, 1850251796668899
OFFSET
0,2
COMMENTS
T(2*n+1,n) is diagonal of triangle A125177.
LINKS
FORMULA
G.f.: (4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x.
a(n) ~ 2^(4*n+1/2) / (sqrt(Pi) * n^(3/2) * 3^(n-3/2)). - Vaclav Kotesovec, Nov 05 2016
MATHEMATICA
Table[Sum[Binomial[2*i, i]*Binomial[2*n-i, n-i+1]/(i+1), {i, 0, n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2016 *)
PROG
(Maxima)
a(n):=sum((binomial(2*i, i)*binomial(2*n-i, n-i+1))/(i+1), i, 0, n+1);
(PARI) x='x+O('x^50); Vec((4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x) \\ G. C. Greubel, Apr 09 2017
CROSSREFS
Sequence in context: A307878 A217632 A026762 * A082307 A099782 A109034
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 02 2016
STATUS
approved