OFFSET
1,1
COMMENTS
Ordered number of edges required to construct every hyperrectangle as a union of unit hypercubes. The sequence gives the n-th smallest such number, and generalizes the two-dimensional A047845 and the three-dimensional A090767 to four dimensions.
Does a(n) ~ n? - Charles R Greathouse IV, Nov 06 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Wikipedia, Symmetric polynomial
FORMULA
These numbers are of the form: 4wxyz + 3(wxz+wyz+wxy+xyz) + 2(wx+wy+wz+xy+xz+yz) + w+x+y+z for any positive integers w, x, y, z.
EXAMPLE
a(1)=32 as this is the number of edges in the unit hypercube.
MATHEMATICA
Edges[x_, y_, z_, w_]:=(4*x*y*z*w)+3*((w*x*z)+(w*y*z)+(w*x*y)+(x*y*z))+2*((w*x)+(w*y)+(w*z)+(x*y)+(x*z)+(y*z))+x+y+z+w; inputs=Tuples[Range[s], 4]; Union[Table[Edges[inputs[[k]][[1]], inputs[[k]][[2]], inputs[[k]][[3]], inputs[[k]][[4]]], {k, 1, Length[inputs]}]]
Accuracy to 170 terms is achieved for s>=5764801, and for the entire list in the limit as s approaches infinity.
PROG
(PARI) list(lim)=my(v=List()); for(w=1, (lim-12)\20, for(x=1, min((lim-8*w-4)\(12*w+8), w), for(y=1, min((lim-5*w*x-3*x-3*w-1)\(7*w*x+5*x+5*w+3), x), forstep(n=((7*w+5)*y+(5*w+3))*x+(5*w + 3)*y+3*w+1, lim, ((4*w+3)*y+3*w+2)*x+(3*w+2)*y+2*w+1, listput(v, n))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric R. Carter, Nov 02 2016
STATUS
approved