login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n+1} binomial(2*n-i,n-i+1)*Catalan(i).
1

%I #25 Apr 10 2017 23:00:24

%S 1,4,16,66,279,1203,5275,23474,105853,483108,2229253,10390691,

%T 48879588,231879456,1108473015,5335987930,25849521109,125945214309,

%U 616833862018,3035286848660,14999774773110,74413424196360,370463714276625,1850251796668899

%N a(n) = Sum_{i=0..n+1} binomial(2*n-i,n-i+1)*Catalan(i).

%C T(2*n+1,n) is diagonal of triangle A125177.

%H Seiichi Manyama, <a href="/A277871/b277871.txt">Table of n, a(n) for n = 0..1381</a>

%F G.f.: (4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x.

%F a(n) ~ 2^(4*n+1/2) / (sqrt(Pi) * n^(3/2) * 3^(n-3/2)). - _Vaclav Kotesovec_, Nov 05 2016

%t Table[Sum[Binomial[2*i, i]*Binomial[2*n-i, n-i+1]/(i+1), {i, 0, n+1}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 05 2016 *)

%o (Maxima)

%o a(n):=sum((binomial(2*i,i)*binomial(2*n-i,n-i+1))/(i+1),i,0,n+1);

%o (PARI) x='x+O('x^50); Vec((4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x) \\ _G. C. Greubel_, Apr 09 2017

%Y Cf. A000108, A125177.

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, Nov 02 2016