OFFSET
0,2
COMMENTS
In general a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * u^k * v^(n-3*k) has g.f. (1-v*x)/((1-v*x)^2 - u*x^2) and satisfies the recurrence a(n) = 2*u*v*a(n-1) - v^2*a(n-2) + u*a(n-3).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-16,2).
FORMULA
G.f.: (1-4*x)/((1-4*x)^2 - 2*x^3).
a(n) = 8*a(n-1) - 16*a(n-2) + 2*a(n-3).
MAPLE
seq(coeff(series((1-4*x)/((1-4*x)^2 - 2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 04 2019
MATHEMATICA
LinearRecurrence[{8, -16, 2}, {1, 4, 16}, 30] (* G. C. Greubel, Sep 04 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-4*x)/((1-4*x)^2 - 2*x^3)) \\ G. C. Greubel, Sep 04 2019
(Magma) I:=[1, 4, 16]; [n le 3 select I[n] else 8*Self(n-1) - 16*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019
(Sage)
def A099782_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/((1-4*x)^2 - 2*x^3)).list()
A099782_list(30) # G. C. Greubel, Sep 04 2019
(GAP) a:=[1, 4, 16];; for n in [4..30] do a[n]:=8*a[n-1]-16*a[n-2] + 2*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 26 2004
STATUS
approved