login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110276
Convolution of large Schroeder numbers and central binomial coefficients.
2
1, 4, 16, 66, 280, 1218, 5422, 24666, 114540, 542278, 2614178, 12814102, 63772982, 321754290, 1643263134, 8483485886, 44214343344, 232362906298, 1230090777342, 6553657204178, 35113127086114, 189062666857686, 1022459506515674
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by Georg Fischer, Apr 09 2020
a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ).
a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k).
a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 14 2021
MATHEMATICA
CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x, 0, 30}] (* Georg Fischer, Apr 09 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // G. C. Greubel, Sep 24 2021
(Sage)
def A110276_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list()
A110276_list(30)
(PARI) a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ Michel Marcus, Sep 25 2021
CROSSREFS
Sequence in context: A082307 A099782 A109034 * A026883 A349730 A151242
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 18 2005
STATUS
approved