The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110276 Convolution of large Schroeder numbers and central binomial coefficients. 2
 1, 4, 16, 66, 280, 1218, 5422, 24666, 114540, 542278, 2614178, 12814102, 63772982, 321754290, 1643263134, 8483485886, 44214343344, 232362906298, 1230090777342, 6553657204178, 35113127086114, 189062666857686, 1022459506515674 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by Georg Fischer, Apr 09 2020 a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ). a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k). a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 14 2021 MATHEMATICA CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x, 0, 30}] (* Georg Fischer, Apr 09 2020 *) PROG (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // G. C. Greubel, Sep 24 2021 (Sage) def A110276_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list() A110276_list(30) (PARI) a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ Michel Marcus, Sep 25 2021 CROSSREFS Cf. A000984, A006318. Sequence in context: A082307 A099782 A109034 * A026883 A349730 A151242 Adjacent sequences: A110273 A110274 A110275 * A110277 A110278 A110279 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)