The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110276 Convolution of large Schroeder numbers and central binomial coefficients. 2
1, 4, 16, 66, 280, 1218, 5422, 24666, 114540, 542278, 2614178, 12814102, 63772982, 321754290, 1643263134, 8483485886, 44214343344, 232362906298, 1230090777342, 6553657204178, 35113127086114, 189062666857686, 1022459506515674 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by Georg Fischer, Apr 09 2020
a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ).
a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k).
a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 14 2021
MATHEMATICA
CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x, 0, 30}] (* Georg Fischer, Apr 09 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // G. C. Greubel, Sep 24 2021
(Sage)
def A110276_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list()
A110276_list(30)
(PARI) a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ Michel Marcus, Sep 25 2021
CROSSREFS
Sequence in context: A082307 A099782 A109034 * A026883 A349730 A151242
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 18 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)