OFFSET
0,3
FORMULA
a(n) = hypergeom([1, 1, 1 - n], [1 - 2*n], 1) * binomial(2*n - 1, n - 1) for n >= 1.
a(n) ~ exp(1) * (n-1)! ~ sqrt(2*Pi*n) * (n/e)^(n-1). - Vaclav Kotesovec, Nov 28 2021
D-finite with recurrence +n*(n-1)*a(n) -(n-1)*(n^2+11*n-19)*a(n-1) +2*(6*n^3-n^2-68*n+93)*a(n-2) +2*(-25*n^3+130*n^2-146*n-65)*a(n-3) +4*(20*n^3-182*n^2+531*n-483)*a(n-4) -8*(n-4)*(2*n-9)^2*a(n-5)=0. - R. J. Mathar, Jul 27 2022
MAPLE
a := n -> `if`(n = 0, 1, add((n - k)!*(k + n - 1)!/((k - 1)!*n!), k = 1..n)):
seq(a(n), n = 0..22);
MATHEMATICA
a[n_] := If[n == 0, 1, Binomial[2 n - 1, n - 1] HypergeometricPFQ[{1, 1, 1 - n}, {1 - 2 n}, 1]]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 27 2021
STATUS
approved