OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..200
FORMULA
a(n) = -(-1)^n*Sum_{k=0..n}[n, n-k]*(-n)^k, where [n, k] denotes the Stirling cycle numbers A132393(n, k).
MAPLE
MATHEMATICA
a[0] = -1; a[n_] := -(-n)^n * FactorialPower[1/n, n]; Array[a, 18, 0] (* Amiram Eldar, Dec 21 2021 *)
PROG
(SageMath)
def a(n): return -(-n)^n*falling_factorial(1/n, n) if n > 0 else -1
print([a(n) for n in (1..17)])
(Python)
from sympy import ff
from fractions import Fraction
def A349731(n): return -1 if n == 0 else -(-n)**n*ff(Fraction(1, n), n) # Chai Wah Wu, Dec 21 2021
(Magma) [-1, 1] cat [Round(n^(n-1)*Gamma((n^2-1)/n)/Gamma((n-1)/n)): n in [2..30]]; // G. C. Greubel, Feb 22 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Dec 21 2021
STATUS
approved