login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349971
Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1.
2
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 15, 0, 1, 4, 21, 80, 105, 0, 1, 5, 36, 231, 880, 945, 0, 1, 6, 55, 504, 3465, 12320, 10395, 0, 1, 7, 78, 935, 9576, 65835, 209440, 135135, 0, 1, 8, 105, 1560, 21505, 229824, 1514205, 4188800, 2027025, 0
OFFSET
1,8
LINKS
FORMULA
From G. C. Greubel, Feb 22 2022: (Start)
A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array).
T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle).
T(2*n, n) = (-1)^(n-1)*A158886(n). (End)
EXAMPLE
Array starts:
[1] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 2, 10, 80, 880, 12320, 209440, 4188800, ... A008544
[4] 1, 3, 21, 231, 3465, 65835, 1514205, 40883535, ... A008545
[5] 1, 4, 36, 504, 9576, 229824, 6664896, 226606464, ... A008546
[6] 1, 5, 55, 935, 21505, 623645, 21827575, 894930575, ... A008543
[7] 1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, ... A049209
[8] 1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, ... A049210
[9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211
Triangle starts:
[1] [1]
[2] [1, 0]
[3] [1, 1, 0]
[4] [1, 2, 3, 0]
[5] [1, 3, 10, 15, 0]
[6] [1, 4, 21, 80, 105, 0]
[7] [1, 5, 36, 231, 880, 945, 0]
[8] [1, 6, 55, 504, 3465, 12320, 10395, 0]
[9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0]
MATHEMATICA
A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 21 2021 *)
PROG
(SageMath)
def A(n, k): return -(-n)^k*falling_factorial(1/n, k)
def T(n, k): return A(n-k+1, k)
for n in (1..9): print([A(n, k) for k in (1..8)])
for n in (1..9): print([T(n, k) for k in (1..n)])
(Magma) [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 22 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 21 2021
STATUS
approved