login
A340986
Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.
6
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
OFFSET
0,8
COMMENTS
A column rise (cf. A000275) means a pair of adjacent columns within a cell where each entry in the first column is less than the adjacent entry in the second column. The order of the columns cannot change. The cells are allowed to be empty.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.
LINKS
FORMULA
Let E(x) = Sum_{n>=0} x^n/n!^2. Then Sum_{n>=0} T(n,k)*x^n/n!^2 = 1/E(-x)^k.
T(n,k) = (n!)^2 * [x^n] 1/BesselJ(0,2*sqrt(x))^k. - Alois P. Heinz, Feb 02 2021
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 19, 92, 255, 544, 995, ...
0, 211, 1354, 4725, 12196, 26215, ...
0, 3651, 29252, 123903, 377904, 939155, ...
MAPLE
T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 02 2021
MATHEMATICA
nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid
CROSSREFS
Columns k=0-4 give: A000007, A000275, A336271, A336638, A336639.
Rows n=0-2 give: A000012, A001477, A014105.
Main diagonal gives A336665.
Sequence in context: A294046 A320079 A349971 * A340798 A355427 A122078
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Feb 01 2021
STATUS
approved