login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334394
Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1).
2
1, 1, 7, 1, 163, 52, 1, 8983, 4499, 341, 1, 966751, 660746, 98256, 2246, 1, 179781181, 155729277, 35677082, 2045282, 15177, 1, 53090086057, 55690144728, 17446464519, 1754605504, 42658239, 104952, 1, 23402291822743, 28825420903351, 11518335730323, 1717307782339, 84058424389, 905365701, 739153, 1
OFFSET
0,3
COMMENTS
An ordered triple of n-permutations ( (a_1,a_2,...,a_n),(b_1,b_2,...,b_n),(c_1,c_2,...,c_n) ) has a common descent at position i, 1<=i<=n-1, if a_i > a_i+1, b_i > b_i+1 and c_i > c_i+1.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 209.
FORMULA
Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/n!^3 = (y-1)/(y-f(x*(y-1))) where f(z) = Sum_{n>=0} z^n/n!^3.
EXAMPLE
Triangle begins:
1;
1;
7, 1;
163, 52, 1;
8983, 4499, 341, 1;
966751, 660746, 98256, 2246, 1;
...
MAPLE
T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x*
(y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n):
seq(seq(T(n, k), k=0..max(0, n-1)), n=0..10); # Alois P. Heinz, Apr 28 2020
MATHEMATICA
nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}]; Drop[Map[Select[#, # > 0 &] &,
Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid
CROSSREFS
Cf. A192721, A008292, A212856 (column k=0), A000442 (row sums).
Sequence in context: A138324 A052122 A027538 * A027478 A009792 A103243
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Apr 26 2020
STATUS
approved