login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052122
Numerators of coefficients in the e.g.f. a(x) such that a(a(x)) = exp(x) - 1.
5
0, 1, 1, 1, 0, 1, -7, 1, 159, -843, -1231, 2359233, -13303471, -271566005, 10142361989, 126956968965, -10502027401553, 64275615468715, 32481110981976151, -3014479147788009411, -147131182752475409229, 14607119841651449406947, 1868869263315549659372569
OFFSET
0,7
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52.
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986 [math.CO], 2013.
FORMULA
a(n)/2^A052123(n) = n!*A052104(n)/A052105(n). - R. J. Mathar, Sep 25 2011
EXAMPLE
a(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + ...
MATHEMATICA
T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[n!*T[n, 1] // Numerator , {n, 0, 22}] (* Jean-François Alcover, Mar 03 2014, after A052104 and Alois P. Heinz *)
CROSSREFS
KEYWORD
sign,frac,easy
AUTHOR
N. J. A. Sloane, Jan 23 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jul 27 2002
STATUS
approved