OFFSET
0,7
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52.
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986 [math.CO], 2013.
FORMULA
EXAMPLE
a(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + ...
MATHEMATICA
T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[n!*T[n, 1] // Numerator , {n, 0, 22}] (* Jean-François Alcover, Mar 03 2014, after A052104 and Alois P. Heinz *)
CROSSREFS
KEYWORD
sign,frac,easy
AUTHOR
N. J. A. Sloane, Jan 23 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jul 27 2002
STATUS
approved