This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052105 Denominators of coefficients in function a(x) such that a(a(x)) = exp(x) - 1. 4
 1, 1, 4, 48, 1, 3840, 92160, 645120, 3440640, 30965760, 14863564800, 24222105600, 7847962214400, 40809403514880, 5713316492083200, 7617755322777600, 5484783832399872000, 5328075722902732800, 1220613711064989696000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..120 Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013. EXAMPLE x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + ... MATHEMATICA a[x_, n_] := Sum[c[k] x^k, {k, 0, n}] ; f[x_, n_] := Series[Exp[x] - 1, {x, 0, n}] // Normal; b[x_, n_] := Series[a[a[x, n], n], {x, 0, n}] // Normal; eq[n_] := Thread[CoefficientList[f[x, n] - b[x, n], x] == 0] // Rest; c[0] = 0; so[3] = Solve[eq[3], {c[1], c[2], c[3]}] // First; so[n_] := so[n] = Solve[eq[n] /. Flatten[Table[so[k], {k, 3, n - 1}]], c[n]] // First Array[c, 19, 0] /. Flatten[Table[so[k], {k, 3, 19}]] // Denominator (* Jean-François Alcover, Jun 08 2011 *) CROSSREFS Cf. A052104, A052122, A052123. Sequence in context: A210828 A141040 A182102 * A010293 A225987 A178429 Adjacent sequences:  A052102 A052103 A052104 * A052106 A052107 A052108 KEYWORD nonn,easy,nice,frac AUTHOR N. J. A. Sloane, Jan 22 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)