login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052102
The second of the three sequences associated with the polynomial x^3 - 2.
6
0, 1, 2, 3, 6, 15, 36, 81, 180, 405, 918, 2079, 4698, 10611, 23976, 54189, 122472, 276777, 625482, 1413531, 3194478, 7219287, 16315020, 36870633, 83324700, 188307261, 425559582, 961731063, 2173436226, 4911794235, 11100267216, 25085727621
OFFSET
0,3
COMMENTS
If x^3 = 2 and n >= 0, then there are unique integers a, b, c such that (1 + x)^n = a + b*x + c*x^2. The coefficient b is a(n).
REFERENCES
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.
LINKS
A. Kumar Gupta and A. Kumar Mittal, Integer Sequences associated with Integer Monic Polynomial, arXiv:math/0001112 [math.GM], Jan 2000.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3), n > 2.
a(n) = Sum_{0..floor(n/3)}, 2^k * binomial(n, 3*k+1). - Ralf Stephan, Aug 30 2004
From R. J. Mathar, Apr 01 2008: (Start)
O.g.f.: x*(1 - x)/(1 - 3*x + 3*x^2 - 3*x^3).
a(n+1) - a(n) = A052101(n). (End)
EXAMPLE
G.f.: = x + 2*x^2 + 3*x^3 + 6*x^4 + 15*x^5 + 36*x^6 + 81*x^7 + 180*x^8 + ...
MAPLE
A052102:= n-> add(2^j*binomial(n, 3*j+1), j=0..floor(n/3)); seq(A052102(n), n=0..40); # G. C. Greubel, Apr 15 2021
MATHEMATICA
LinearRecurrence[{3, -3, 3}, {0, 1, 2}, 32] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) {a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 1)} /* Michael Somos, Aug 05 2009 */
(PARI) {a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k + 1))} /* Michael Somos, Aug 05 2009 */
(PARI) {a(n) = if( n<0, 0, polcoeff( (x - x^2) / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
(Magma) [n le 3 select n-1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..40]]; // G. C. Greubel, Apr 15 2021
(Sage) [sum(2^j*binomial(n, 3*j+1) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021
CROSSREFS
Sequence in context: A375278 A182240 A352901 * A369628 A053561 A237585
KEYWORD
nonn,easy
AUTHOR
Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000
STATUS
approved