|
|
A336638
|
|
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^3.
|
|
3
|
|
|
1, 3, 21, 255, 4725, 123903, 4368729, 199467243, 11455187445, 808475761695, 68805857523321, 6950458374996843, 822292004658568761, 112639503374757412875, 17688916392275574761805, 3157133540377493872350855, 635546443798928578953138165
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..16.
|
|
FORMULA
|
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * A002893(k) * a(n-k).
|
|
MATHEMATICA
|
nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^3, {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
|
|
CROSSREFS
|
Cf. A000275, A002893, A336271, A336639.
Column k=3 of A340986.
Sequence in context: A209917 A179504 A197716 * A317059 A262939 A232470
Adjacent sequences: A336635 A336636 A336637 * A336639 A336640 A336641
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Jul 28 2020
|
|
STATUS
|
approved
|
|
|
|