login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340984
Number of prime rectangle tilings with n tiles up to equivalence.
6
1, 1, 0, 0, 1, 0, 2, 6
OFFSET
1,7
COMMENTS
Say that a tiling of a rectangle by other rectangles is prime if the only sub-rectangles in the tiling are those formed by a single tile. Say that two tilings are equivalent if there exists an inclusion/overlap-preserving bijection between the vertices, edges, and faces of every rectangle in them.
Problem 69 in Hugo Steinhaus's One Hundred Problems In Elementary Mathematics asks the reader to show that a(3) = a(4) = 0, and that there exist prime dissections for 5, 7, and 8 in which the pieces are of equal area. It cites Czesław Ryll-Nardzewski as proving that a(6) = 0, though this is not difficult to show by hand. The book also provides diagrams of both n = 7 solutions and four of the six n = 8 solutions.
Chung et al.'s paper Tiling Rectangles with Rectangles shows that the sequence grows at least as fast as c*2^(n/7) for some positive constant c, and states without proof that it is bounded above by 20000^n.
LINKS
F. R. K. Chung, E. N. Gilbert, R. L. Graham, J. B. Shearer, and J. H. van Lint, Tiling Rectangles with Rectangles, Mathematics Magazine, 1982.
EXAMPLE
For n = 5 the a(5) = 1 example looks like
_____
| |___|
|_|_| |
|___|_|
.
For n = 7 the a(7) = 2 examples look like
_______ _______
| |_____| |_____| |
|_|___| | |___| | |
| |_|_| | |_|_|_|
|___|___| |_|_____|
CROSSREFS
Sequence in context: A139062 A376895 A241861 * A122760 A358029 A208279
KEYWORD
nonn,hard,more,nice
AUTHOR
Drake Thomas, Feb 01 2021
STATUS
approved