login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340982
Number of ways to write n as an ordered sum of 9 positive cubes.
8
1, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 9, 0, 126, 0, 0, 0, 0, 72, 0, 126, 0, 0, 0, 0, 252, 0, 84, 0, 0, 0, 0, 504, 0, 36, 0, 0, 36, 0, 630, 0, 9, 0, 0, 252, 0, 504, 0, 10, 0, 0, 756, 0, 252, 0, 72, 0, 0, 1260, 0, 72, 0, 252, 84, 0, 1260, 0, 9, 0, 504, 504
OFFSET
9,8
FORMULA
G.f.: (Sum_{k>=1} x^(k^3))^9.
MAPLE
b:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
`if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..94); # Alois P. Heinz, Feb 01 2021
MATHEMATICA
nmax = 94; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^9, {x, 0, nmax}], x] // Drop[#, 9] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 01 2021
STATUS
approved