login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306100
Square array T(n,k) = number of plane partitions of n with parts colored in (at most) k colors; n >= 0, k >= 0; read by antidiagonals.
8
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 6, 0, 1, 4, 21, 34, 13, 0, 1, 5, 36, 102, 122, 24, 0, 1, 6, 55, 228, 525, 378, 48, 0, 1, 7, 78, 430, 1540, 2334, 1242, 86, 0, 1, 8, 105, 726, 3605, 8964, 11100, 3690, 160, 0, 1, 9, 136, 1134, 7278, 25980, 56292, 47496, 11266, 282, 0
OFFSET
0,8
LINKS
OEIS wiki, Plane partitions.
Wikipedia, Plane partition.
FORMULA
T(n,k) = Sum_{j=0..n} A091298(n,j)*k^j, assuming A091298(n,0) = A000007(n).
T(n,k) = Sum_{i=0..k} C(k,i) * A319600(n,i). - Alois P. Heinz, Sep 28 2018
EXAMPLE
The array starts:
[1 1 1 1 1 1 ...] = A000012
[0 1 2 3 4 5 ...] = A001477
[0 3 10 21 36 55 ...] = A014105
[0 6 34 102 228 430 ...] = A067389
[0 13 122 525 1540 3605 ...]
[0 24 378 2334 8964 25980 ...]
[0 48 1242 11100 56292 203280 ...]
PROG
(PARI) A306100(n, k)=sum(j=1, n, A091298(n, j)*k^j)
CROSSREFS
Columns k=0-5 give: A000007, A000219, A306099, A306093, A306094, A306095.
See A306101 for a variant.
Sequence in context: A307910 A128888 A305401 * A294046 A320079 A349971
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Sep 22 2018
EXTENSIONS
Edited by Alois P. Heinz, Sep 26 2018
STATUS
approved