

A306095


Number of plane partitions of n where parts are colored in (at most) 5 colors.


4



1, 5, 55, 430, 3605, 25980, 203280, 1417530, 10373080, 71595830, 501688880, 3376856755, 23181027055, 153326091805, 1024829902855, 6713038952355, 44092634675905, 284723995000530, 1845944380173205, 11791816763005330, 75485171060740630, 478105767714603130
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(0) = 1 corresponds to the empty sum, in which all terms are colored in one among five given colors, since there is no term at all.


LINKS

M. F. Hasler, Table of n, a(n) for n = 0..50


FORMULA

a(n) = Sum_{k=1..n} A091298(n,k)*5^k.


EXAMPLE

For n = 1, there is only the partition [1], which can be colored in any of the five colors, whence a(1) = 5.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 5 + 25 + 25 = 55 distinct possibilities.


PROG

(PARI) a(n)=!n+sum(k=1, n, A091298(n, k)*5^k)


CROSSREFS

Cf. A091298, A208447.
Column 5 of A306100 and A306101. See A306099, A306093, A306094, A306096 for columns 2, 3, 4 and 6.
Sequence in context: A144893 A015266 A138163 * A081300 A190543 A144894
Adjacent sequences: A306092 A306093 A306094 * A306096 A306097 A306098


KEYWORD

nonn


AUTHOR

M. F. Hasler, Sep 22 2018


STATUS

approved



