|
|
A256268
|
|
Table of k-fold factorials, read by antidiagonals.
|
|
9
|
|
|
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - Peter Luschny, Dec 21 2021
|
|
EXAMPLE
|
1 1 5 45 585 9945 208845... A007696
1 1 6 66 1056 22176 576576... A008548
1 1 7 91 1729 43225 1339975... A008542
1 1 8 120 2640 76560 2756160... A045754
1 1 9 153 3825 126225 5175225... A045755
1 1 10 190 5320 196840 9054640... A045756
1 1 11 231 7161 293601 14977651... A144773
|
|
MAPLE
|
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
|
|
MATHEMATICA
|
T[n_, k_]= Product[j*k+1, {j, 0, n-1}]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
|
|
PROG
|
(PARI) T(n, k) = prod(j=0, n-1, j*k+1);
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
(Magma)
function T(n, k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n-1]]);
end if; return T; end function;
[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
(Sage) [[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
(GAP) Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|