login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092985 a(n) = Arithofactorial(n) = AF(n) is the product of first n terms of an arithmetic progression with the first term 1 and common difference n. 3
1, 1, 3, 28, 585, 22176, 1339975, 118514880, 14454403425, 2326680294400, 478015854767451, 122087424094272000, 37947924636264267625, 14105590169042424729600, 6178966019176767549393375, 3150334059785191453342744576, 1849556085478041490537172810625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

We have the triangle

  1;

  1 3;

  1 4  7;

  1 5  9 13;

  1 6 11 16 21;

  1 7 13 19 25 31;

...

Sequence contains the product of the terms of the rows.

a(n) = b(n-1) where b(n) = n^n*Gamma(n+1/n)/Gamma(1/n) and b(0) is limit n->0+ of b(n). - Gerald McGarvey, Nov 10 2007

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

a(n) = 1*(1+n)*(1+2n)*...*(n^2-n+1).

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*n^(n-k). - Vladeta Jovovic, Jan 28 2005

a(n) = n! * [x^n] 1/(1 - n*x)^(1/n) for n > 0. - Ilya Gutkovskiy, Oct 05 2018

a(n) ~ sqrt(2*Pi) * n^(2*n - 3/2) / exp(n). - Vaclav Kotesovec, Oct 05 2018

EXAMPLE

a(5) = 1*6*11*16*21 = 22176.

MAPLE

a:= n-> mul(n*j+1, j=0..n-1):

seq(a(n), n=0..20);  # Alois P. Heinz, Nov 24 2015

MATHEMATICA

Flatten[{1, Table[n^(n - 1)*Pochhammer[1 + 1/n, n - 1], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 05 2018 *)

PROG

(PARI) vector(21, n, my(m=n-1); prod(j=0, m-1, j*m+1)) \\ G. C. Greubel, Mar 04 2020

(MAGMA) [1] cat [ (&*[j*n+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Mar 04 2020

(Sage) [product(j*n+1 for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Mar 04 2020

(GAP) List([0..20], n-> Product([0..n-1], j-> j*n+1) ); # G. C. Greubel, Mar 04 2020

CROSSREFS

Cf. A057237, A092987.

Main diagonal of A256268.

Sequence in context: A062497 A056066 A174483 * A331196 A181588 A084880

Adjacent sequences:  A092982 A092983 A092984 * A092986 A092987 A092988

KEYWORD

easy,nonn

AUTHOR

Amarnath Murthy, Mar 28 2004

EXTENSIONS

More terms from Erich Friedman, Aug 08 2005

Offset corrected by Alois P. Heinz, Nov 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:05 EST 2021. Contains 349445 sequences. (Running on oeis4.)