Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Mar 30 2023 16:23:16
%S 1,1,3,28,585,22176,1339975,118514880,14454403425,2326680294400,
%T 478015854767451,122087424094272000,37947924636264267625,
%U 14105590169042424729600,6178966019176767549393375,3150334059785191453342744576,1849556085478041490537172810625
%N a(n) is the product of first n terms of an arithmetic progression with the first term 1 and common difference n.
%C We have the triangle (chopped versions of A076110, A162609)
%C 1;
%C 1 3;
%C 1 4 7;
%C 1 5 9 13;
%C 1 6 11 16 21;
%C 1 7 13 19 25 31;
%C ...
%C Sequence contains the product of the terms of the rows.
%C a(n) = b(n-1) where b(n) = n^n*Gamma(n+1/n)/Gamma(1/n) and b(0) is limit n->0+ of b(n). - _Gerald McGarvey_, Nov 10 2007
%H Alois P. Heinz, <a href="/A092985/b092985.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = 1*(1+n)*(1+2n)*...*(n^2-n+1).
%F a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*n^(n-k). - _Vladeta Jovovic_, Jan 28 2005
%F a(n) = n! * [x^n] 1/(1 - n*x)^(1/n) for n > 0. - _Ilya Gutkovskiy_, Oct 05 2018
%F a(n) ~ sqrt(2*Pi) * n^(2*n - 3/2) / exp(n). - _Vaclav Kotesovec_, Oct 05 2018
%e a(5) = 1*6*11*16*21 = 22176.
%p a:= n-> mul(n*j+1, j=0..n-1):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Nov 24 2015
%t Flatten[{1, Table[n^n * Pochhammer[1/n, n], {n, 1, 20}]}] (* _Vaclav Kotesovec_, Oct 05 2018 *)
%o (PARI) vector(21, n, my(m=n-1); prod(j=0,m-1, j*m+1)) \\ _G. C. Greubel_, Mar 04 2020
%o (Magma) [1] cat [ (&*[j*n+1: j in [0..n-1]]): n in [1..20]]; // _G. C. Greubel_, Mar 04 2020
%o (Sage) [product(j*n+1 for j in (0..n-1)) for n in (0..20)] # _G. C. Greubel_, Mar 04 2020
%o (GAP) List([0..20], n-> Product([0..n-1], j-> j*n+1) ); # _G. C. Greubel_, Mar 04 2020
%Y Cf. A057237, A092987.
%Y Main diagonal of A256268.
%K easy,nonn
%O 0,3
%A _Amarnath Murthy_, Mar 28 2004
%E More terms from _Erich Friedman_, Aug 08 2005
%E Offset corrected by _Alois P. Heinz_, Nov 24 2015