OFFSET
0,2
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (1 + 20*x + 15*x^2)/(x-1)^4. - Alois P. Heinz, Sep 04 2014
a(n) = 6*n^3 + 11*n^2 + 6*n + 1. - Reinhard Zumkeller, Jun 08 2015
E.g.f.: (1 + 23*x + 29*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 03 2020
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/4 - 4*log(2) + 9*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2) - (1 - sqrt(3)/2)*Pi. (End)
MAPLE
seq(mul(j*n+1, j=1..3), n = 0..40); # G. C. Greubel, Mar 03 2020
MATHEMATICA
Product[j*Range[0, 40] +1, {j, 3}] (* G. C. Greubel, Mar 03 2020 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 24, 105, 280}, 40] (* Harvey P. Dale, Apr 21 2020 *)
PROG
(Haskell)
a011199 n = product $ map ((+ 1) . (* n)) [1, 2, 3]
-- Reinhard Zumkeller, Jun 08 2015
(PARI) vector(41, n, my(m=n-1); prod(j=1, 3, j*m+1)) \\ G. C. Greubel, Mar 03 2020
(Magma) [&*[j*n+1:j in [1..3]]: n in [0..40]]; // G. C. Greubel, Mar 03 2020
(Sage) [product(j*n+1 for j in (1..3)) for n in (0..40)] # G. C. Greubel, Mar 03 2020
(GAP) List([0..40], n-> (n+1)*(2*n+1)*(3*n+1) ); # G. C. Greubel, Mar 03 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved