login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011199
a(n) = (n+1)*(2*n+1)*(3*n+1).
7
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, 5320, 7161, 9384, 12025, 15120, 18705, 22816, 27489, 32760, 38665, 45240, 52521, 60544, 69345, 78960, 89425, 100776, 113049, 126280, 140505, 155760, 172081, 189504, 208065, 227800, 248745, 270936, 294409, 319200
OFFSET
0,2
FORMULA
G.f.: (1 + 20*x + 15*x^2)/(x-1)^4. - Alois P. Heinz, Sep 04 2014
a(n) = 6*n^3 + 11*n^2 + 6*n + 1. - Reinhard Zumkeller, Jun 08 2015
E.g.f.: (1 + 23*x + 29*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 03 2020
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/4 - 4*log(2) + 9*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2) - (1 - sqrt(3)/2)*Pi. (End)
MAPLE
seq(mul(j*n+1, j=1..3), n = 0..40); # G. C. Greubel, Mar 03 2020
MATHEMATICA
Product[j*Range[0, 40] +1, {j, 3}] (* G. C. Greubel, Mar 03 2020 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 24, 105, 280}, 40] (* Harvey P. Dale, Apr 21 2020 *)
PROG
(Haskell)
a011199 n = product $ map ((+ 1) . (* n)) [1, 2, 3]
-- Reinhard Zumkeller, Jun 08 2015
(PARI) vector(41, n, my(m=n-1); prod(j=1, 3, j*m+1)) \\ G. C. Greubel, Mar 03 2020
(Magma) [&*[j*n+1:j in [1..3]]: n in [0..40]]; // G. C. Greubel, Mar 03 2020
(Sage) [product(j*n+1 for j in (1..3)) for n in (0..40)] # G. C. Greubel, Mar 03 2020
(GAP) List([0..40], n-> (n+1)*(2*n+1)*(3*n+1) ); # G. C. Greubel, Mar 03 2020
CROSSREFS
Cf. A079588.
Sequence in context: A027265 A044275 A044656 * A213874 A100149 A013980
KEYWORD
nonn,easy
STATUS
approved