login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079588
a(n) = (n+1)*(2*n+1)*(4*n+1).
5
1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645
OFFSET
0,2
COMMENTS
Apart from offset, same as A100147.
REFERENCES
R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
FORMULA
Sum_{n>=0} 1/a(n) = Pi/3 (cf. Tijdeman).
G.f.: (1+26*x+21*x^2)/(1-x)^4. - L. Edson Jeffery, Mar 25 2013
Sum_{n>=0} a(n)/2^n = 308; Sum_{n>=0} (-1)^n*a(n)/2^n = -4/3. - L. Edson Jeffery, Mar 25 2013
a(n) = 8*n^3 + 14*n^2 + 7*n + 1. - Reinhard Zumkeller, Jun 08 2015
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 - Pi/2 + sqrt(2)*Pi/3 + 2*sqrt(2)*arcsin(1)/3. - Amiram Eldar, Jan 13 2021
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Jun 23 2021
MATHEMATICA
Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* Amiram Eldar, Jan 13 2021 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 30, 135, 364}, 40] (* Harvey P. Dale, Aug 01 2022 *)
PROG
(Haskell)
a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4]
-- Reinhard Zumkeller, Jun 08 2015
CROSSREFS
Cf. A100147.
Cf. A258721 (first differences), A011199.
Sequence in context: A044743 A221522 A291582 * A100147 A117750 A348828
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 26 2003
STATUS
approved