Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 01 2022 10:54:46
%S 1,30,135,364,765,1386,2275,3480,5049,7030,9471,12420,15925,20034,
%T 24795,30256,36465,43470,51319,60060,69741,80410,92115,104904,118825,
%U 133926,150255,167860,186789,207090,228811,252000,276705,302974,330855,360396,391645
%N a(n) = (n+1)*(2*n+1)*(4*n+1).
%C Apart from offset, same as A100147.
%D R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
%H Reinhard Zumkeller, <a href="/A079588/b079588.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F Sum_{n>=0} 1/a(n) = Pi/3 (cf. Tijdeman).
%F G.f.: (1+26*x+21*x^2)/(1-x)^4. - _L. Edson Jeffery_, Mar 25 2013
%F Sum_{n>=0} a(n)/2^n = 308; Sum_{n>=0} (-1)^n*a(n)/2^n = -4/3. - _L. Edson Jeffery_, Mar 25 2013
%F a(n) = 8*n^3 + 14*n^2 + 7*n + 1. - _Reinhard Zumkeller_, Jun 08 2015
%F Sum_{n>=0} (-1)^n/a(n) = log(2)/3 - Pi/2 + sqrt(2)*Pi/3 + 2*sqrt(2)*arcsin(1)/3. - _Amiram Eldar_, Jan 13 2021
%F a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Wesley Ivan Hurt_, Jun 23 2021
%t Table[(n + 1)*(2*n + 1)*(4*n + 1), {n, 0, 40}] (* _Amiram Eldar_, Jan 13 2021 *)
%t LinearRecurrence[{4,-6,4,-1},{1,30,135,364},40] (* _Harvey P. Dale_, Aug 01 2022 *)
%o (Haskell)
%o a079588 n = product $ map ((+ 1) . (* n)) [1, 2, 4]
%o -- _Reinhard Zumkeller_, Jun 08 2015
%Y Cf. A100147.
%Y Cf. A258721 (first differences), A011199.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jan 26 2003