OFFSET
0,2
LINKS
FORMULA
a(n) = 7*A034975(n) = (8*n-1)(!^8), n >= 1, a(0) = 1.
G.f.: 1/(1-7*x/(1-8*x/(1-15*x/(1-16*x/(1-23*x/(1-24*x/(1-31*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-1)^n*Sum_{k=0..n} 8^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x where Q(k) = 1 - x*(8*k-1)/(1 - x*(8*k+8)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = 8^n*Gamma(n+7/8)/Gamma(7/8). - R. J. Mathar, Mar 20 2013
E.g.f: (1-8*x)^(-7/8). - Vaclav Kotesovec, Jan 28 2015
G.f.: 1/(1-7*x-56*x^2/(1-23*x-240*x^2/(1-39*x-552*x^2/(1-55*x-992*x^2/(1-71*x-1560*x^2/(1-... )))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Dec 09 2020
G.f.: 1/G(0) where G(k) = 1 - (16*k+7)*x - 8*(k+1)*(8*k+7)*x^2/G(k+1); (continued fraction). - Nikolaos Pantelidis, Dec 19 2020
Sum_{n>=0} 1/a(n) = 1 + (e/8)^(1/8)*(Gamma(7/8) - Gamma(7/8, 1/8)). - Amiram Eldar, Dec 20 2022
MATHEMATICA
FoldList[Times, 1, 8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
PROG
(PARI) a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
(Sage) m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
(Magma) m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved