OFFSET
1,2
COMMENTS
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 4*(4*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0; a(1, 1)=1.
a(n,m) = (m/n) * 4^(n-m) * Sum_{k=1..n-m} binomial(n+k-1, n-1) * Sum_{j=0..k} binomial(j, n-m-3*k+2*j) * 4^(j-k) * binomial(k,j) * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), n > m; a(n,n)=1. - Vladimir Kruchinin, Feb 08 2011
MATHEMATICA
a[n_, n_] = 1; a[n_, m_] := m/n * 4^(n-m) * Sum[ Binomial[n+k-1, n-1] * Sum[ Binomial[j, n-m-3*k+2*j] * 4^(j-k) * Binomial[k, j] * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), {j, 0, k}], {k, 1, n-m}]; Table[a[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved