login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049213
A convolution triangle of numbers obtained from A025749.
4
1, 6, 1, 56, 12, 1, 616, 148, 18, 1, 7392, 1904, 276, 24, 1, 93632, 25312, 4080, 440, 30, 1, 1230592, 344960, 59808, 7360, 640, 36, 1, 16612992, 4792128, 876960, 118224, 11960, 876, 42, 1, 228890112, 67586816, 12900416, 1860992, 209200, 18096, 1148
OFFSET
1,2
COMMENTS
a(n,1) = A025749(n); a(n,1)= 4^(n-1)*3*A034176(n-1)/n!, n >= 2.
G.f. for m-th column: ((1-(1-16*x)^(1/4))/4)^m.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 4*(4*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0; a(1, 1)=1.
a(n,m) = (m/n) * 4^(n-m) * Sum_{k=1..n-m} binomial(n+k-1, n-1) * Sum_{j=0..k} binomial(j, n-m-3*k+2*j) * 4^(j-k) * binomial(k,j) * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), n > m; a(n,n)=1. - Vladimir Kruchinin, Feb 08 2011
MATHEMATICA
a[n_, n_] = 1; a[n_, m_] := m/n * 4^(n-m) * Sum[ Binomial[n+k-1, n-1] * Sum[ Binomial[j, n-m-3*k+2*j] * 4^(j-k) * Binomial[k, j] * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), {j, 0, k}], {k, 1, n-m}]; Table[a[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
CROSSREFS
Cf. A048966. Row sums = A025757.
Sequence in context: A308281 A347211 A083837 * A165886 A339100 A344918
KEYWORD
easy,nonn,tabl
STATUS
approved