login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048966
A convolution triangle of numbers obtained from A025748.
6
1, 3, 1, 15, 6, 1, 90, 39, 9, 1, 594, 270, 72, 12, 1, 4158, 1953, 567, 114, 15, 1, 30294, 14580, 4482, 1008, 165, 18, 1, 227205, 111456, 35721, 8667, 1620, 225, 21, 1, 1741905, 867834, 287199, 73656, 15075, 2430, 294, 24, 1, 13586859, 6857136, 2328183, 623106, 136323, 24354, 3465, 372, 27, 1
OFFSET
1,2
COMMENTS
A generalization of the Catalan triangle A033184.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011
EXAMPLE
Triangle begins:
1;
3, 1;
15, 6, 1;
90, 39, 9, 1;
594, 270, 72, 12, 1;
4158, 1953, 567, 114, 15, 1;
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)
PROG
(Haskell)
a048966 n k = a048966_tabl !! (n-1) !! (k-1)
a048966_row n = a048966_tabl !! (n-1)
a048966_tabl = [1] : f 2 [1] where
f x xs = ys : f (x + 1) ys where
ys = map (flip div x) $ zipWith (+)
(map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0]))
(zipWith (*) [1..] ([0] ++ xs))
-- Reinhard Zumkeller, Feb 19 2014
CROSSREFS
Cf. A034000, A049213, A049223, A049224. a(n, 1)= A025748(n), a(n, 1)= 3^(n-1)*2*A034000(n-1)/n!, n >= 2. Row sums = A025756.
Sequence in context: A144815 A065250 A092589 * A297704 A104990 A089463
KEYWORD
easy,nonn,tabl,nice
STATUS
approved