login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A convolution triangle of numbers obtained from A025748.
6

%I #30 Dec 24 2016 09:31:00

%S 1,3,1,15,6,1,90,39,9,1,594,270,72,12,1,4158,1953,567,114,15,1,30294,

%T 14580,4482,1008,165,18,1,227205,111456,35721,8667,1620,225,21,1,

%U 1741905,867834,287199,73656,15075,2430,294,24,1,13586859,6857136,2328183,623106,136323,24354,3465,372,27,1

%N A convolution triangle of numbers obtained from A025748.

%C A generalization of the Catalan triangle A033184.

%H Reinhard Zumkeller, <a href="/A048966/b048966.txt">Rows n = 1..125 of triangle, flattened</a>

%H W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%F a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.

%F G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.

%F a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - _Vladimir Kruchinin_, Feb 08 2011

%e Triangle begins:

%e 1;

%e 3, 1;

%e 15, 6, 1;

%e 90, 39, 9, 1;

%e 594, 270, 72, 12, 1;

%e 4158, 1953, 567, 114, 15, 1;

%t a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Apr 26 2011, after given formula *)

%o (Haskell)

%o a048966 n k = a048966_tabl !! (n-1) !! (k-1)

%o a048966_row n = a048966_tabl !! (n-1)

%o a048966_tabl = [1] : f 2 [1] where

%o f x xs = ys : f (x + 1) ys where

%o ys = map (flip div x) $ zipWith (+)

%o (map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0]))

%o (zipWith (*) [1..] ([0] ++ xs))

%o -- _Reinhard Zumkeller_, Feb 19 2014

%Y Cf. A034000, A049213, A049223, A049224. a(n, 1)= A025748(n), a(n, 1)= 3^(n-1)*2*A034000(n-1)/n!, n >= 2. Row sums = A025756.

%K easy,nonn,tabl,nice

%O 1,2

%A _Wolfdieter Lang_