Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:45:19
%S 1,4,16,66,280,1218,5422,24666,114540,542278,2614178,12814102,
%T 63772982,321754290,1643263134,8483485886,44214343344,232362906298,
%U 1230090777342,6553657204178,35113127086114,189062666857686,1022459506515674
%N Convolution of large Schroeder numbers and central binomial coefficients.
%H G. C. Greubel, <a href="/A110276/b110276.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by _Georg Fischer_, Apr 09 2020
%F a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ).
%F a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k).
%F a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - _Vaclav Kotesovec_, Sep 14 2021
%t CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x,0,30}] (* _Georg Fischer_, Apr 09 2020 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // _G. C. Greubel_, Sep 24 2021
%o (Sage)
%o def A110276_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list()
%o A110276_list(30)
%o (PARI) a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ _Michel Marcus_, Sep 25 2021
%Y Cf. A000984, A006318.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 18 2005