login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110273 a(n) = Pell(n)^3 + Pell(n+1)^3. 1
1, 9, 133, 1853, 26117, 367389, 5169809, 72744121, 1023588937, 14402985777, 202665398173, 2851718540021, 40126725007181, 564625868522949, 7944888884612393, 111793070252410993, 1573047872420021137 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..850

Index entries for linear recurrences with constant coefficients, signature (12,30,-12,-1).

FORMULA

G.f.: (1+x)*(1-4*x-x^2)/((1+2*x-x^2)*(1-14*x-x^2)).

a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4).

a(n) = ( 3*(-1)^n*A001333(n) + (Pell(3*n) + Pell(3*(n+1)) )/8.

MATHEMATICA

LinearRecurrence[{12, 30, -12, -1}, {1, 9, 133, 1853}, 30] (* Harvey P. Dale, Jan 24 2018 *)

Sum[Fibonacci[Range[0, 30] +j, 2]^3, {j, 0, 1}] (* G. C. Greubel, Sep 17 2021 *)

PROG

(Magma) I:=[1, 9, 133, 1853]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) - 12*Self(n-3) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 17 2021

(Sage) [lucas_number1(n+1, 2, -1)^3 + lucas_number1(n, 2, -1)^3 for n in (0..30)] # G. C. Greubel, Sep 17 2021

CROSSREFS

Cf. A000129, A110272.

Sequence in context: A167253 A097999 A089547 * A082760 A268654 A112426

Adjacent sequences: A110270 A110271 A110272 * A110274 A110275 A110276

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jul 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 20:34 EDT 2023. Contains 361433 sequences. (Running on oeis4.)