The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110273 a(n) = Pell(n)^3 + Pell(n+1)^3. 1
 1, 9, 133, 1853, 26117, 367389, 5169809, 72744121, 1023588937, 14402985777, 202665398173, 2851718540021, 40126725007181, 564625868522949, 7944888884612393, 111793070252410993, 1573047872420021137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..850 Index entries for linear recurrences with constant coefficients, signature (12,30,-12,-1). FORMULA G.f.: (1+x)*(1-4*x-x^2)/((1+2*x-x^2)*(1-14*x-x^2)). a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4). a(n) = ( 3*(-1)^n*A001333(n) + (Pell(3*n) + Pell(3*(n+1)) )/8. MATHEMATICA LinearRecurrence[{12, 30, -12, -1}, {1, 9, 133, 1853}, 30] (* Harvey P. Dale, Jan 24 2018 *) Sum[Fibonacci[Range[0, 30] +j, 2]^3, {j, 0, 1}] (* G. C. Greubel, Sep 17 2021 *) PROG (Magma) I:=[1, 9, 133, 1853]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) - 12*Self(n-3) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 17 2021 (Sage) [lucas_number1(n+1, 2, -1)^3 + lucas_number1(n, 2, -1)^3 for n in (0..30)] # G. C. Greubel, Sep 17 2021 CROSSREFS Cf. A000129, A110272. Sequence in context: A366017 A097999 A089547 * A082760 A268654 A112426 Adjacent sequences: A110270 A110271 A110272 * A110274 A110275 A110276 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:41 EDT 2024. Contains 372847 sequences. (Running on oeis4.)