login
A110270
a(n) = (n mod 2)*(n mod 3).
3
0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0
OFFSET
0,6
COMMENTS
Period 6: repeat [0, 1, 0, 0, 0, 2]. - Joerg Arndt, Aug 17 2014
Least positive integer k such that n^k == 1 (mod 6), or 0 if GCD(n,6) > 1. - Bruno Berselli, Mar 22 2016
FORMULA
a(n) = A000035(n) * A010872(n).
a(n) = n mod (2 + n mod 2). - Wesley Ivan Hurt, Aug 16 2014
a(n) = a(n-6) for n>5. G.f.: x*(1+2*x^4) / ((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)). - Colin Barker, Mar 22 2016
a(n) = ( 6*sin(n*Pi/3) - sqrt(3) )*( sin(n*Pi/3) + sin(2*n*Pi/3) )/6. - Wesley Ivan Hurt, Jun 23 2016
MAPLE
A110270:=n->(n mod 2)*(n mod 3): seq(A110270(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2014
MATHEMATICA
Table[Mod[n, 2]Mod[n, 3], {n, 0, 110}] (* or *) PadRight[{}, 110, {0, 1, 0, 0, 0, 2}] (* Harvey P. Dale, Oct 01 2013 *)
PROG
(PARI) a(n) = (n % 2) * (n % 3); \\ Michel Marcus, Aug 17 2014
(Magma) &cat [[0, 1, 0, 0, 0, 2]^^20]; // Bruno Berselli, Mar 22 2016
(PARI) concat(0, Vec(x*(1+2*x^4)/((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)) + O(x^50))) \\ Colin Barker, Mar 22 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 18 2005
STATUS
approved