The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099784 a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * 2^k * (-2)^(n-3*k). 6
 1, -2, 4, -6, 4, 16, -92, 312, -848, 1960, -3824, 5760, -3824, -15392, 88384, -299616, 814144, -1881344, 3669568, -5524608, 3657472, 14807680, -84909824, 287723520, -781639424, 1805843968, -3521371136, 5298829824 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * u^k * v^(n-3*k) has g.f. (1-v*x)/((1-v*x)^2 - u*x^2) and satisfies the recurrence a(n) = 2*u*v*a(n-1) - v^2*a(n-2) + u*a(n-3). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-4,-4,2). FORMULA G.f.: (1+2*x)/((1+2*x)^2 - 2*x^3). a(n) = Sum_{k=0..floor(n/3)} C(n-k, 2*k)*2^(n-2*k)*(-1)^(n-3*k). a(n) = -4*a(n-1) - 4*a(n-2) + 2*a(n-3). MAPLE seq(coeff(series((1-2*x)/((1-2*x)^2 - 2*x^3), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Sep 04 2019 MATHEMATICA LinearRecurrence[{-4, -4, 2}, {1, -2, 4}, 30] (* G. C. Greubel, Sep 04 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-2*x)/((1-2*x)^2 - 2*x^3)) \\ G. C. Greubel, Sep 04 2019 (MAGMA) I:=[1, -2, 4]; [n le 3 select I[n] else -4*Self(n-1) - 4*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019 (Sage) def A099784_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1-2*x)/((1-2*x)^2 - 2*x^3)).list() A099784_list(30) # G. C. Greubel, Sep 04 2019 (GAP) a:=[1, -2, 4];; for n in [4..30] do a[n]:=-4*a[n-1]-4*a[n-2] + 2*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019 CROSSREFS Cf. A099780, A099781, A099782, A099783, A099785, A099786, A099787. Sequence in context: A278259 A293473 A257080 * A082747 A127275 A242796 Adjacent sequences:  A099781 A099782 A099783 * A099785 A099786 A099787 KEYWORD easy,sign AUTHOR Paul Barry, Oct 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 00:53 EDT 2020. Contains 334747 sequences. (Running on oeis4.)