OFFSET
0,2
COMMENTS
In general a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k) * u^k * v^(n-4*k) has g.f. (1-v*x)^2/((1-v*x)^3 - u*x^4) and satisfies the recurrence a(n) = 3*v*a(n-1) - 3*v^2*a(n-2) + v^3*a(n-3) + u*a(n-4).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-12,8,2).
FORMULA
G.f.: (1-2*x)^2/((1-2*x)^3 - 2*x^4).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) + 2*a(n-4).
MAPLE
seq(coeff(series((1-2*x)^2/((1-2*x)^3 - 2*x^4), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 04 2019
MATHEMATICA
Table[Sum[Binomial[n-k, 3k]2^(n-3k), {k, 0, Floor[n/4]}], {n, 0, 30}] (* or *) LinearRecurrence[{6, -12, 8, 2}, {1, 2, 4, 8}, 30] (* Harvey P. Dale, Apr 01 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-2*x)^2/((1-2*x)^3 - 2*x^4)) \\ G. C. Greubel, Sep 04 2019
(Magma) I:=[1, 2, 4, 8]; [n le 4 select I[n] else 6*Self(n-1) - 12*Self(n-2) + 8*Self(n-3) + 2*Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 04 2019
(Sage)
def A099785_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-2*x)^2/((1-2*x)^3 - 2*x^4)).list()
A099785_list(30) # G. C. Greubel, Sep 04 2019
(GAP) a:=[1, 2, 4, 8];; for n in [5..30] do a[n]:=6*a[n-1] -12*a[n-2] + 8*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, Sep 04 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 26 2004
STATUS
approved