login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099785
a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k) * 2^(n-3*k).
6
1, 2, 4, 8, 18, 48, 144, 448, 1380, 4152, 12224, 35456, 102024, 292768, 840416, 2416384, 6959504, 20069280, 57913536, 167158656, 482462752, 1392319488, 4017460224, 11590946816, 33439639616, 96470796672, 278311599616
OFFSET
0,2
COMMENTS
In general a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k) * u^k * v^(n-4*k) has g.f. (1-v*x)^2/((1-v*x)^3 - u*x^4) and satisfies the recurrence a(n) = 3*v*a(n-1) - 3*v^2*a(n-2) + v^3*a(n-3) + u*a(n-4).
FORMULA
G.f.: (1-2*x)^2/((1-2*x)^3 - 2*x^4).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) + 2*a(n-4).
MAPLE
seq(coeff(series((1-2*x)^2/((1-2*x)^3 - 2*x^4), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 04 2019
MATHEMATICA
Table[Sum[Binomial[n-k, 3k]2^(n-3k), {k, 0, Floor[n/4]}], {n, 0, 30}] (* or *) LinearRecurrence[{6, -12, 8, 2}, {1, 2, 4, 8}, 30] (* Harvey P. Dale, Apr 01 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-2*x)^2/((1-2*x)^3 - 2*x^4)) \\ G. C. Greubel, Sep 04 2019
(Magma) I:=[1, 2, 4, 8]; [n le 4 select I[n] else 6*Self(n-1) - 12*Self(n-2) + 8*Self(n-3) + 2*Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 04 2019
(Sage)
def A099785_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-2*x)^2/((1-2*x)^3 - 2*x^4)).list()
A099785_list(30) # G. C. Greubel, Sep 04 2019
(GAP) a:=[1, 2, 4, 8];; for n in [5..30] do a[n]:=6*a[n-1] -12*a[n-2] + 8*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, Sep 04 2019
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 26 2004
STATUS
approved