|
|
A082747
|
|
a(n) is the least k such that k*Mrs(n)*Mrs(n+1)*Mrs(n+2) + 1 is prime, where Mrs(n) is the n-th Mersenne prime.
|
|
0
|
|
|
2, 4, 6, 4, 60, 280, 60, 210, 306, 154, 154, 538, 1272, 640, 4180, 6384, 12816, 2020, 10918, 9694, 45420, 47506, 11680, 1408
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
2*(2^2-1)*(2^3-1)*(2^5-1) + 1 = 1303 is prime, so a(1) = 2.
|
|
MATHEMATICA
|
f[n_] := Module[{k = 1}, While[! PrimeQ[k*n + 1], k++]; k]; f /@ Times @@@ Partition[2^MersennePrimeExponent[Range[15]] - 1, 3, 1] (* Amiram Eldar, Jul 18 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(11) inserted and a(17)-a(24) added by Amiram Eldar, Jul 18 2021
|
|
STATUS
|
approved
|
|
|
|