login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165203
Expansion of (1+x)*c(x)^3/(1-x*c(x)^3), c(x) the g.f. of A000108.
2
1, 5, 20, 81, 332, 1372, 5702, 23793, 99576, 417664, 1754866, 7383204, 31096466, 131084954, 552969854, 2334012425, 9856336324, 41639407776, 175971686398, 743888534968, 3145439344550, 13302946909338, 56272308538682
OFFSET
0,2
COMMENTS
Hankel transform is A165204.
LINKS
Iain Fox, Table of n, a(n) for n = 0..1595 (first 201 terms from Vincenzo Librandi)
FORMULA
G.f. (for offset 1): (1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2)).
a(n) = (A165201(n) - 0^n) + A165201(n+1).
Conjecture: (n+1)*(5*n-31)*a(n) +(5*n^2+74*n+62)*a(n-1) +(-285*n^2+ 1072*n-757)*a(n-2) +(695*n^2-3674*n+4206)*a(n-3) +2*(45*n-74)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Dec 11 2011
a(n) ~ (18/sqrt(5)-8) * (2+sqrt(5))^(n+2). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
Rest[CoefficientList[Series[(1+x)*((1-x)*Sqrt[1-4*x]+5*x-1)/(2*(1-4*x-x^2)), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(PARI) first(n) = x='x+O('x^(n+1)); Vec((1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2))) \\ Iain Fox, Feb 27 2018
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x)*(1-Sqrt(1-4*x))^3/(x*(8*x^2 - (1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 18 2019
(Sage) ((1+x)*(1-sqrt(1-4*x))^3/(x*(8*x^2 - (1-sqrt(1-4*x))^3)) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
CROSSREFS
Sequence in context: A033131 A321703 A022021 * A249946 A030520 A183933
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2009
STATUS
approved