login
A236833
a(n) = number of times n occurs in A234741.
9
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 1, 0, 1, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 4, 1, 2, 2, 0, 1, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 1, 4, 1, 1, 3, 1, 2, 1, 1, 3, 1, 6, 1, 0
OFFSET
0,6
COMMENTS
Number of distinct values k such that A234741(k) = n.
LINKS
FORMULA
a(2n) = a(n).
This should also have a direct formula, mirroring the formula for A236853. Cf. also A236861.
PROG
(Scheme, counting cases empirically with a naive loop. A234742 gives an absolute upper bound for any inverse of A234741):
(define (A236833 n) (let ((u (A234742 n))) (let loop ((k n) (ntimes 0)) (cond ((> k u) ntimes) ((= (A234741 k) n) (loop (+ k 1) (+ ntimes 1))) (else (loop (+ k 1) ntimes))))))
CROSSREFS
A236834 gives the positions of zeros, A236835 the positions of terms larger than one, A236841 the positions of terms other than zero.
Sequence in context: A277873 A032542 A107038 * A328511 A371245 A043278
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 31 2014
STATUS
approved